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The over-all mount efficiency was meas-
ured at 5.4 millimeters and 2 millimeters us-
ing the above arrangement. The measured
efficiency at these wavelengths was found to
be 50 per cent and 25 per cent, respectively.

This bolometer provided a means of
measuring peak powers as low as 20 micro-
watts. As it is a device that measures the RF
energy converted into heat, its response is
proportional tothe RF power. This bolometer
provided a detector of known response law,
which is essential to accurately perform
impedance measurements.

R. H. MLLER

K. B. MaLLORY

Microwave Lab.

W. W, Hansen Labs. of Physics
Stanford University

Stanford, Calif.
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Injection Phase Locking of Two-
Cavity Klystron Oscillators*®

Injection phase locking of reflex klystron
oscillators was recently reported by Mackey
in these TransacTioNs.! Two-cavity klys-
tron oscillators may be phase locked in a
similar manner. Injection locking affords a
means of two-cavity oscillator stabilization
that obviates the necessity for elaborate
beam voltage and temperature control.
Excellent frequency stability may be ob-
tained by locking the two-cavity oscillator
to a signal derived from either a crystal
oscillator or a frequency standard. Fig. 1
shows a two-cavity oscillator injection lock-
ing system.

An estimate of the locking bandwidth
can be made by adapting the low-frequency
theory of Adler? to the two-cavity oscillator.
Since only a fraction of the output power is
fed back to the input cavity to sustain oscil-
lation, the input cavity is lightly coupled
to the load, The input cavity typically re-
ceives 30 per cent of the injected locking
power. The total locking bandwidth 2Af
may be expressed as

fo 0.3P1>1’2

where f,=oscillator frequency, Qr=total
loaded Q of input cavity, Pi=locking power,
P,=output power.

Locking measurements were made on a
Sperry SOU-293, two-cavity oscillator at
17.5 Ge. A calibrated spectrum analyzer
was used to observe the locking range. Fig. 2

* Received April 25, 1963.

1 R, C. Mackey, “Injection locking of klystron
oscillators,” TRE Trans. oN MICROWAVE THEORY
AND TecuNIQUES, vol. MTT-10, pp. 228-235; July,
1962,

2 R, Adler, “A study of locking phenomena in
oscillators,” Proc. IRE, vol. 34, pp. 351-357; June,
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Fig 1—Injection phase-locking system for
two-cavity oscillators.
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Fig. 2—Phase-locked bandwidth vs injected-locking
power for SOU-293, 17.5 Ge.

shows the locking bandwidth vs locking
power for the two modes of the SOU-293.
The curves differ because the increased
electron beam loading at the higher power
mode produces a lower value of loaded Q.
Two-cavity oscillators require higher
values of locking power than reflex klystrons
for a given locking bandwidth since their
loaded Q’s are higher and only about 30 per
cent of the locking power enters the input
cavity. One compensating factor is that the
higher inherent stability of the two-cavity
oscillator requires less locking bandwidth
and thus less locking power in many applica-
tions.
WaLTER R. Day, Jr.
Sperry Electronic Tube Div.
Sperry Rand Corp.
Gainesville, Fla.

TEM Mode in a Parallel-Plate
Waveguide Filled with a
Gyrotropic Dielectric*

The purpose of this communication is to
point out that a parallel-plate waveguide
filled with a gyrotropic dielectric, can sup-

port a TEM mode which has special charac-
teristics.

* Received March 28, 1963; revised manuscript
recerved May 6, 1963,
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Consider a waveguide formed by two
perfectly conducting plane parallel plates.
The lower and the upper plates occupy,
respectively, the regions — oo <x<w,
—wo<y<w, 5=0 and — o <x<{w, —w»
<y< «,3=qa, where x, ¥y and z form a right-
kand rectangular coordinate system (Fig. 1).
The space between the parallel plates is filled
uniformlyv with a homogeneous plasma,
which for the sake of simplicity is assumed
to be an incompressible, loss-free electron
fluid, with stationary ions that neutralize
the electrons, on the average. A line source
given by

E.(x, 0) = Ed(x) 1

is assumed to be present inside the wave-
guide, along the » axis. Only the linear,
time-harmonic problem is considered. The
harmonic time dependence ¢7*¢? is implied
for all the field components. An external
magnetic fleld is assumed to be impressed
throughout the plasma in the y direction.

rz =a

Line Source
e
z=0

Perfectly Cond ucn& Gyrotropic  Dielectric

Plane Screens/7

Fig. 1—Geometry of the problem.

Under these assumptions, the plasma
becomes equivalent to an anisotropic di-
electric. The line source excites only the E
mode, for which the magnetic field has only
a single component, namely, H,(x, z). It can
be shown [1] that H,(x, 2) satisfies the wave
equation

9?2 9%
— —— 2 -
St B B =0, @
where
Fo(er? — €2
B2 = wueo € kuzi - M 3)
€1 €1 €1
@— R -1 R
€ =—"—"—; € = ——~———
o — R @ — R?)
(@2 — 02)(Q* — %
e=¢g’— e = T — o) 3 (4)
and
FR + R+ 4 .
91,2=—_2‘——“; s = 4/1 - R2 (5)!
=2, R=2 (6)*
wp wp

Also po and ¢ are the permeability and di-
electric constant pertaining to vacuum; wp
and w, are, respectively, the plasma and the
gyromagnetic frequency of an electron.
The nonvanishing components E.,(x, z)
and E,(x, 5) of the electric field are obtained

1 The notation used in (5) and (6), though fre-
quently used in the literature, is different from the
URSI notation as given in J. A. Ratcliffe, “The Mag-
neto-Tonic Theory,” Cambridge University Press,
Cambridge, England; 1959.
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from Hy(x, 2) as follows:

1 0 a9
By, 5) = — (—261— - €2~> Hy(x,z) (Ta)
WeGE dz [¢)
and
1 i) [i]
L%, 2) = — (z 6q— — 62~> Hy(x, 2. (Tb)
wege ax [}

Let Hy(x, 2) and E.(x, z) be represented
as a superposition of plane waves in the form

1 =
9 == [ B et 60

1 o
Bin2) = 5 f E.¢, ef=de.  (8b)

The use of (8) in (2), (7a) and (1) gives

d? A=

[ +e]mes=o 9a)
— 1 R _
B9 = — (—ia -~ i) TLi5,2) OD)

wEge 0z
and

Ez(f, 0) = EO: (90)
where
B2 _ ¢2
=3+‘/__£ k>¢ 10)
+ivit — k2 kE<¢

The solution of (9a) is obtained as

(g, z) = Aets | Beée, 11

The application of the boundary conditions
(9¢) and E.(¢, ¢)=0 to (11) enables the
determination of 4 and B with the follow-
ing results:

wegeEge e

A=
27 sin £a(ei — desl)
i eka
. (12)

24 sin £a(ef + dead)
It follows from (8a), (11) and (12) that

_ iweelky ° 1

T 4x f _» Sin g
ek (—a) k)

'[612 — deof +

€1 -+ deaf”

The integrand of (13) is seen to have no
branch points or poles at = +k. The poles
of the integrand of (13) arise from the zeros
of sin #a and those of ef +4ef. The zeros of
sin & occur for {= i\/kz—(nvr/a)z, where
# is an integer greater than zero. If ¢ <w=/k,
these zeros are purely imaginary and the
corresponding contribution to Hy(x, z) will
not give propagating modes. For a<ux/k,
the only singularities of the integrand in
(13) are the poles given by the zeros of
af+ier. The zeros of gftief, which lie
on the proper Riemann surface defined by
(10), may be derived with the help of (4),
to be given by

,(x, )

] edede. (13)

_]62

= Fhve

(14)

€2

Correspondence

The contributions to Hy(x, z) given by the
residues of the poles (14) are obtained as

wéu! Ez{ Eo

e?|]

« gtz (l€al fea)V ertho(feal Vo1 (a—z)

Hy(x,5) =

2 sinh [kq(l

we(]] ezl Eo

+ _—

gtk (ﬁ—> Ve + ko EL(Z —a). (15)
€2 '\/61

It is evident that H,(x, z) given in (15)
will give rise to a mode propagating in the x
direction in the range of frequencies for
which ¢>0. From (4) and Fig. 2, it is seen
that >0 for 0<Q<R and <2< «. Also
on substituting (15) in (7a) it is seen that
E.(x, 2)=0. Further, it is seen from (4) and
Fig. 2, that &<0 for 0<Q<R and that
>0 for 2 <Q< ». Therefore, the first and
the second terms in (15) represent a TEM
wave propagating, respectively, in the posi-
tive and the negative x directions in the fre-
quency range 0 <Q<R, and vice versa for
Qz <Q < w0,
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Fig. 2—e, @ and ¢/e as a function of Q.

In the frequency ranges for which & >0,
it can be shown that /e >+/e/e. It fol-
lows, therefore, from (3) that kov/e >k.
Since k is the wavenumber in an unbounded
medium and k¢ve is that of the TEM
mode in the waveguide, it is clear that the
TEM mode is a slow wave. In contrast to
this, the TEM wave in the parallel-plate
waveguide filled with an isotropic dielectric
has the same phase velocity as in an un-
bounded medium.

It is well known that for the TEM mode
in a parallel-plate waveguide filled with an
isotropic dielectric, the field components are
constant in amplitude in any cross section
of the waveguide. But, for the TEM mode
(15) obtained when the parallel-plate wave-
guide is filled with a gyrotropic dielectric, it
is seen that for the first term in (15) the
amplitude decreases exponentially from the
bottom to the top plate whereas in the sec-
ond term there is an exponential increase in
amplitude.

As the distance @ between the top and
the bottom plates is increased, the infinity
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of higher order m modes given by the poles
§=t~k—
oue and, at the same time, the amplitude of
the exponentially growing wave given by the
second term in (15) falls off exponentially.
Finally when the top plate is removed to in-
finity, the second term in (15) vanishes, the
first term becomes the unidirectional sur-
face wave along the bottom plate and the
totality of the higher order modes combine
to give the space wave [1].

In conclusion, it is appropriate to men-
tion that a number of examples in the theory
of propagation of electromagnetic waves in
magnetoplasma slabs may be found in the
literature such as in [2].
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Boundary Excitation of Waveguides
Containing Anisotropic Media*

Several methods can be utilized to
launch electromagnetic waves along an
ionized column contained in a cylindrical
duct. An often used one is shown in Fig. 1
where the waveguide 1is aperture-coupled
to a surrounding resonant cavity. In this
configuration, the fields inside the wave-
guide are produced by boundary excitation,
and the fields are uniquely determined by
the assignment of the tangential component
of E in the aperture. It is our purpose to
present explicit equations for the various
field components in terms of the value of
Evang. The contribution from the volume
sources J and J» is also included for the
sake of completeness. The detailed deriva-
tion follows the mecthods of Bresler and
Marcuvitz!? and is givern elsewhere.®

To achieve a satisfactory degree of gen-
erality, we assume (Fig. 2) that the wave-

* Received June 7, 1963.
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